
LA-UR-18-21284
Approved for public release; distribution is unlimited.

Title: Bayesian Model Calibration on Active Subspaces

Author(s): Lewis, Allison L
Smith, Ralph C
Williams, Brian J.

Intended for: American Control Conference, 2017-05-24 (Seattle, Washington, United
States)

Issued: 2018-02-20



Disclaimer:
Los Alamos National Laboratory, an affirmative action/equal opportunity employer, is operated by the Los Alamos National Security, LLC for
the National Nuclear Security Administration of the U.S. Department of Energy under contract DE-AC52-06NA25396.  By approving this
article, the publisher recognizes that the U.S. Government retains nonexclusive, royalty-free license to publish or reproduce the published
form of this contribution, or to allow others to do so, for U.S. Government purposes.  Los Alamos National Laboratory requests that the
publisher identify this article as work performed under the auspices of the U.S. Department of Energy.  Los Alamos National Laboratory
strongly supports academic freedom and a researcher's right to publish; as an institution, however, the Laboratory does not endorse the
viewpoint of a publication or guarantee its technical correctness.



Bayesian Model Calibration on Active Subspaces*

Allison L. Lewis1, Ralph C. Smith2, and Brian J. Williams3

Abstract— For many applications, the calibration of model
parameters is complicated by the fact that parameters are
often unidentifiable in the sense that they are not uniquely
determined by the data. Moreover, for problems with moderate
parameter dimensions – e.g., 8-50 parameters – deterministic,
frequentist, and Bayesian model calibration techniques will
often stall or fail to converge. To address both problems,
we consider model calibration on active subspaces comprised
of linear combinations of parameters. We first discuss the
construction of active subspaces for cases when gradients may
or may not be available and note how one can compute
global sensitivity indices. We then employ a Delayed Rejection
Adaptive Metropolis algorithm to infer parameter distributions
on the active subspace and then map these distributions back
to the full space. We illustrate the technique for problems in
which analytic solutions are available, discretized elliptic PDEs,
and a closure relation employed in reactor design.

I. INTRODUCTION

The inference of calibration parameters in ordinary and
partial differential equation (PDE) models is often challeng-
ing for various reasons. First, the numerical complexity of
PDEs often dictates that a limited number of model realiza-
tions can be achieved with computational budgets. Secondly,
inputs comprised of parameters, initial and boundary con-
ditions, or exogenous forces are often unidentifiable in the
sense that they are not uniquely determined by measured
data. This can occur for input dimensions as low as two or
three and the difficulty is compounded if parameters are lin-
early or nonlinearly related. For some problems, this can be
mitigated if tight prior densities are employed for Bayesian
inference. Finally, input dimensions can be moderate to high
– e.g., 30 to over 1000 – which can limit the effectiveness of
deterministic optimization routines or frequentist or Bayesian
statistical inference algorithms.

In this paper, we illustrate how Bayesian inference on
active subspaces of inputs can be used to address these diffi-
culties for certain applications. As detailed in [2], and sum-
marized in Section II, active subspace techniques isolate the
subspace of identifiable inputs, which often has significantly
lower dimension than the original input set. Inference on
this subspace is thus well-posed and often substantially more
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efficient due to the reduced dimensionality. In conjunction,
one can construct a surrogate model on the active subspace
that is significantly more efficient to implement than the
original PDE. This addresses the challenge associated with
solving computationally intensive PDEs.

Since one typically desires point estimates or distributions
for the original physical inputs, rather then the transformed
set, we map inference results back to the physical space. This
will not yield unique results for unidentifiable parameter sets.
To address this, we employ the active subspace algorithms
to construct global sensitivity indices that specify which of
the physical parameters will be informed during Bayesian
inference. For noninfluential parameters, the prior distribu-
tion will not be informed by the likelihood comprised of the
data and model.

We note that Bayesian inference on active subspaces
has previously been illustrated in [5]. In that work, the
authors define the active subspaces based on the gradient
of the negative log-likelihood and implement a random walk
Metropolis-Hastings algorithm based on the data misfit. We
employ a Delayed Rejection Adaptive Metropolis (DRAM)
algorithm [7], [12], which achieves more effective sampling
and mixing for moderate-dimensional parameter spaces.
However, the primary novelty of this paper is the use of
global sensitivity indices to specify those parameters that
will be informed when inference results are mapped back to
the physical space.

II. ACTIVE SUBSPACE CONSTRUCTION AND GLOBAL
SENSITIVITY INDICES

We illustrate active subspace construction for a general
function

f = f(q), q = [q1, ..., qm],

where the random variable q has an associated probability
density function ρ : Rm → R+. We denote the gradient of
f by ∇qf(q) = [ ∂f∂q1 · · ·

∂f
∂qm

]T and use it to construct the
matrix

C =

∫
(∇qf)(∇qf)T ρ dq. (1)

Since C is symmetric and positive semi-definite, it admits
an eigenvalue decomposition

C = WΛWT , Λ = diag(λ1, ..., λm),

where λ1 ≥ · · · ≥ λm ≥ 0 and W = [w1, . . . ,wm]. We
partition the eigenvalues and eigenvectors according to their
split

Λ =

[
Λ1

Λ2

]
, W = [W1 W2], (2)
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should one occur [2]. We then define rotated coordinates
y ∈ Rn and z ∈ Rm−n by

y = WT
1 q, z = WT

2 q,

noting that f varies more along y directions than along z.
To implement the method, one computes the gradient

vector
∇qf

j = ∇qf(qj), j = 1, ...,M,

at each sample point qj from ρ and constructs the matrix

G =
1√
M

[
∇qf

1 · · · ∇qf
M
]
. (3)

We note that GGT ≈ C. The matrix G ∈ Rm×M admits
a singular value decomposition G = UΛVT . This forms
the basis for the gradient-based method employed in [1]–[3].
Readers are referred to [10] for details regarding a gradient-
free algorithm, which can be employed when gradient or
adjoint capabilities are not available.

To perform Bayesian inference on the active subspace,
we fit a polynomial surface g(y) in the manner detailed in
[2]. We summarize active subspace-based Bayesian inference
in Algorithm 1. Note that throughout this investigation,
we employ Gaussian prior distributions to avoid the issues
associated with rotating hypercubes, which may result in
marginal and conditional distributions that are no longer uni-
form; see [2] for details. The extension to more general prior
distributions constitutes future work. We employ a Delayed
Rejection Adaptive Metropolis (DRAM) algorithm [7], [12]
to compute marginal and pairwise posterior distributions.

Finally, we summarize the manner in which active sub-
spaces can be used to quantify the global sensitivity of
the parameters q1, · · · , qm. For some problems, the compo-
nents U(:, 1) can be used to rank the significance of each
component qi of q since it quantifies the directions in the
parameter space where perturbations have the most influence.
It is illustrated in [6], however, that the activity scores α(n),
defined by

α(n) =

n∑
j=1

λjw
2
j , (4)

provide a more comprehensive sensitivity index. Here wj is
the jth column of the eigenvector matrix W and w2

j should
be interpreted as squaring each component of wj . Those
parameters that play a larger role in the important directions
specified by the active subspace will be assigned larger
scores, whereas parameters that are relatively insignificant
will have scores close to zero.

III. EXAMPLES

In this section, we provide four examples to illustrate
aspects of the Bayesian inference algorithm on active sub-
spaces. The first focuses on a simple algebraic example to
illustrate the algorithm performance when the gradient can
be computed analytically. Examples 2 and 3 illustrate the
algorithm for discretized elliptic PDEs. In Example 4, we
illustrate the algorithm for the Dittus-Boelter relation, which

Algorithm 1 Bayesian Inference on Active Subspaces
(1) Compute a set of sample gradient vectors
∇qf

i = ∇qf(qi), for i = 1, ...,M .
(2) Compute the SVD of the gradient matrix

G =
1√
M

[
∇qf

1 ... ∇qf
M
]

= UΛVT

(3) Identify the dimension n of the active subspace, either
based on gaps in the singular values or through the use
of the activity scores (4).

(4) Project a set of training points qj , j = 1, ..., N, into the
active subspace

yj = U(:, 1 : n)Tqj .

Fit a multivariate polynomial response surface g(y) to
the training data {yj , f(qj)}.

(5) Calibrate the active variables y using DRAM. Note that
we minimize the sum of squares comparing the response
surface g(y) to a set of simulated data, {f(qnominal) +
εk}. Here we take εk ∼ N(0, 0.05 · f(qnominal)), unless
otherwise noted, for k ranging over the number of data
points.

(6) Transform the resulting chain of active variable samples
back into the full space

qp = U(:, 1 : n)yp + U(:, n+ 1 : m)zp,

for p ranging over the length of the DRAM chain. Here
the ‘inactive’ variables zj , j = 1, . . . , N are iid with
each component sampled from the prior distribution
N (0, 1).

comprises a closure relation employed in two-phase nuclear
thermal-hydraulic equations.

A. Example 1: Two-Parameter Exponential Relation

Consider the function

f(q) = exp (0.7q1 + 0.3q2), (5)

with the parameter vector q = [q1, q2]. The gradient vector
is

∇qf =

[
∂f

∂q1

∂f

∂q2

]T
= exp (0.7q1 + 0.3q2) · [0.7 0.3]T .

Computing the gradient vector repeatedly at samples {qi}Mi=1

yields a gradient matrix G2×M of rank one. To obtain a
basis for the active subspace, we compute the singular value
decomposition G = UΛVT . The rank of the matrix G and
the spectrum of singular values indicate a one-dimensional
active subspace, for which U(:, 1) = [0.9191 0.3939]T is
a basis.

We first calibrate the model in the full two-dimensional
parameter space, using synthetic data generated from the full
model evaluated at the nominal parameter value q = [0, 0],
with errors εi ∼ N (0, 0.05). We employ Gaussian prior
densities, q1, q2 ∼ N (0, 1), when running DRAM. We note
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Fig. 1. (a) Posterior densities in the original parameter space, and (b) joint
density for the function f(q) = exp (0.7q1 + 0.3q2).

in Figure 1(a) that the prior density for the more influential
parameter q1 is informed by the likelihood whereas the prior
density for the less significant q2 is minimally informed. The
fact that q1 and q2 are not jointly identifiable is illustrated
by the nearly single-valued joint density in Figure1(b), which
aligns with the inactive subspace.

We next employ Algorithm 1 to perform calibration in
the active subspace thus reducing the dimension of our
problem from two parameters to one. We plot the third-order
response surface g(y), computed in Step (4) of Algorithm 1,
in Figure 2 along with test points. In Figure 3, we plot the
prior densities and posterior densities computed on the 1-D
active subspaces and transformed back to the physical space.
We also compare the posterior densities computed on the
full space. For the more significant parameter q1, the prior
is informed by the data model and two posterior densities
are qualitatively close. For the less significant q2, the prior
density is minimally informed by the likelihood.
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Fig. 2. Third-order univariate response surface y(y) and test points.
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Fig. 3. Posterior densities computed in the full and reduced spaces.

B. Example 2: Elliptic PDE

Our next example is a variation of the elliptic PDE from
[2]. We note that Bayesian inference on active subspaces is
illustrated for this example in [5].

Let u = u(s,q) satisfy the elliptic PDE

−∇s · (a(s,q)∇su(s, a(s,q))) = 1, s ∈ [0, 1]2, (6)

with homogeneous Dirichlet boundary conditions u = 0 on
the left, top, and bottom of the spatial domain, denoted by Γ1,
and a homogenous Neumann boundary condition ∂u

∂s1
= 0

on the right side, denoted by Γ2. The coefficient a(s,q) is
taken to be a log-Gaussian second-order random field with
mean zero and covariance function

C(s, s′) = exp(β−1||s− s′||1). (7)

The random field can be expressed in terms of the eigenval-
ues γi and orthonormal eigenfunctions φi of C by using a
truncated Karhunen-Loeve (KL) expansion,

log(a(s,q)) =

m∑
i=1

qiγiφi. (8)

Here qi are independent and identically distributed (iid)
standard normal random variables. For this example, we use
m = 20; note that m = 100 parameters are used in the
original problem.

To obtain function evaluations at a given set of input
parameters q, the elliptic problem is discretized using a stan-
dard finite element method with a mesh containing 34,320
triangles and 17,361 nodes. The eigenfunctions φi = φi(q)
are approximated on this mesh for i = 1, ..., N by solving
the matrix equation Ku = f for u = u(q) at the mesh nodes.
Here the stiffness matrix has elements [K]ij =

∫
Ω
a∇sφi(s)·

∇sφj(s)ds, u = [u1, ..., uN ]T and [f ]i =
∫

Ω
φi(s)ds. The

scalar response is then approximated by

f(q) = cTMu(q) ≈ 1

|Γ2|

∫
Γ2

u(s,q)ds, (9)

where [M]ij = 1
|Γ2|

∫
Γ2
φi(s)φj(s)ds and the components of

c are equal to one where they correspond to Γ2, and zero
elsewhere.

A singular value decomposition G = UΛVT of the
gradient matrix yields a distinct one-dimensional active sub-
space, where U(:, 1) is a basis for the space. We generate
synthetic data from the original model for use in calibration,
and then calibrate the physical model in the full space and
for a 2nd-order multivariate polynomial response surface in
the reduced active subspace. The model calibration in the
full 20-dimensional space takes approximately 38 minutes
whereas the reduced space calibration required only 9.52
seconds. This demonstrates the advantage of constructing a
lower-dimensional active subspace for model calibration and
uncertainty quantification (UQ). We plot the posterior density
for the active variable y1 in Figure 4(a).

Based on the singular values, the parameter q1 is con-
siderably more significant than the other nineteen parame-
ters. Therefore, after calibrating in the reduced space and
transforming back into the original parameter space, we see
that this parameter exhibits the greatest change from prior to
posterior density whereas the posterior densities for all other
parameters remain relatively close to their standard normal
prior densities.
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Fig. 4. (a) Posterior density of active variable y1. (b) Comparison of the
posterior densities for q1 for the full and reduced space calibrations.

In the full space calibration, we do not observe changes
from prior to posterior density for any of the 20 variables.
This is due to unidentifiability in the full parameter space and
hence we are unable to inform any of the prior densities. In
Figure 4(b), we display the posterior densities for q1 for both
the full and reduced space calibrations. The densities for the
complete parameter set are plotted in Figure 5. This example
illustrates the necessity of performing inference in the active
subspace and transforming distributions back to the physical
space for an unidentifiable parameter set.
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Fig. 5. Posterior densities for all 20 parameters. The prior densities are
plotted in black dashed-dot lines, while the full space calibration is shown
in blue dashed and the reduced active subspace calibration in solid red.

C. Example 3: Multiple Elliptic PDEs

We now modify the previous problem to illustrate calibra-
tion with an active subspace having multiple dimensions, as
presented in [8]. We consider a family of PDEs

−∇s · (a(s,q, w)∇su(s,q, w)) = 1,

s ∈ [0, 1]2, w = 1, ...,W
(10)

based upon the original problem from [2]. We employ
identical boundary conditions for each PDE as in the original
problem (6).

Each random field a(s,q, w) is log-Gaussian with mean
zero and corresponding covariance function Cw, and is ex-

pressed by the Karhunen-Loevre expansion (8) with mw

eigenvalues and eigenvectors of the covariance matrix and
mw standard Gaussian random variables. We employ the
quantity of interest

f(q1, ...,qW ) =

W∑
w=1

cTMuw(xw)

≈
W∑
w=1

1

|Γ2|

∫
Γ2

u (a(s,qw, w)) ds. (11)

We note that the quantity of interest is dependent upon∑W
w=1mw total parameters and should vary primarily along

W directions. Using W = 3, we define the covariance
functions

C =

(
1 +
||s− s′||22

2β

)β
(12)

for values β =
{

2
5 ,

4
5 ,

6
5

}
. To compute values of f , the

solution to each of the 3 PDEs is approximated on a finite
element mesh of N = 727 nodes using the code from [3],
[4], [9], [11]. Discarding eigenvalues that are less than 10−4

in magnitude, we obtain a total parameter space dimension
of
∑3
w=1mw = 91. We note that the active subspace has

dimension three due to the construction of the problem,
which is supported by the singular value plot in Figure 6.

Figure 7 illustrates the comparison between the observed
model responses and those predicted via a 3rd-order mul-
tivariate polynomial response surface for active subspace
dimensions 1, 2, and 3 at 500 test points. We note that by
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Fig. 6. Normalized singular values for the elliptic PDE (10). Note the gap
between singular values 3 and 4, indicating a 3-dimensional active subspace.
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Fig. 7. Observed versus predicted outputs comparing the true quantity of
interest to that predicted via the constructed response surface.
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dimension 3, we observe very close agreement between the
true and predicted values, once again supporting the choice
of a 3-dimensional active subspace.

By construction, the 91 physical parameters are not iden-
tifiable since the model has a 3-D active subspace. Here we
demonstrate how the activity scores α(n), defined in (4),
can be used to designate which of the prior distributions for
the 91 parameters will be informed via calibration on the
active subspace. We also demonstrate that inference on the
full 91-D space yields spurious posterior densities.

Using (4), we compute the activity scores plotted in
Figure 8. The largest scores are for q38, q66, and q1 with
respective values of 2.84, 1.66, and 1.65. The next largest
score is for q40 and is nearly two orders of magnitude smaller
with a value of 0.04. Hence we expect that prior distributions
for the sensitive parameters q38, q66, and q1 will be informed
during Bayesian calibration and that prior distributions for
the remaining parameters will be minimally informed.

Calibration in the full 91-D spaces requires approximately
15 hours of computation time whereas calibration in the 3-D
active subspace takes only 20 seconds. We plot the DRAM
chains for the three most significant parameters in Figure 9.
The chains constructed on the active subspace are visually
well burned-in as required to construct reliable posterior
densities. In contrast, the full-space chains are wandering and
not converging in distribution, as is typical for unidentifiable
parameters.

In Figure 10, we plot the prior and posterior densities
for the three most sensitive parameters along with those for
the next three most sensitive parameters q40, q68 and q3. As
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Fig. 8. Activity scores (4) for the 91 physical parameters.
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Fig. 9. DRAM chains for the three most significant parameters q38, q66
and q1 for the (a) active subspace calibration and (b) full space calibration.
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Fig. 10. Posterior densities for the six most significant parameters.

expected, calibration on the active subspace informs the prior
distributions for q38, q66, and q1, producing significantly
narrower posterior densities but does not inform the prior
distributions for the remaining 88 parameters.

In contrast, the full space calibration appears to inform
all of the prior distributions. However, this contradicts the
constructed dimension of the active subspace and is due to
the fact that chains are not adequately converging for the
full unidentifiable parameter set. This illustrates the necessity
of using sensitivity analysis, based on activity scores, to
ascertain which parameters will be informed and performing
Bayesian inference on the active or identifiable subspace.

D. Example 4: Dittus-Boelter Equation

Here we consider the Dittus-Boelter equation

Nu = q1Req2Prq3 , (13)

where Nu, Re and Pr respectively denote the Nusselt,
Reynolds and Prandtl numbers and the parameters are q =
[q1, q2, q3]. This closure relation is employed in thermal-
hydraulic models used to quantify two- and three-phase flow
in nuclear reactors. We employ experimental data with a
sample size of n = 56 points for use in calibration. For
calibration on the full space, we employ uniform distributions
U(0, 2×nominal) for the nominal values [0.023, 0.8, 0.4]. We
employ Gaussian prior distributions when calibrating on the
active subspace.

Performing calibration via the DRAM algorithm on the
full parameter space reveals that the full parameter set is
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Fig. 11. Joint densities for the (a) full and (b) reduced space calibration.
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unidentifiable; see Figure 11(a) for a joint density plot of
each of the parameter pairs. We observe that a unique optimal
parameter set does not exist due to the single-valued nature
of the joint density plot for q1 and q2. This results in
DRAM chains that never achieve burn-in without tight prior
densities. For this reason, we exploit the active subspace for
calibration.

We compute the gradient matrix, noting that each column
of G is of the form

G(:, j) =

 Req
j
2Prq

j
3

qj1Req
j
2Prq

j
3 log(Re)

qj1Req
j
2Prq

j
3 log(Pr)

 ,
for the parameter sample qj = [qj1, q

j
2, q

j
3]. Computing the

singular value decomposition of this matrix yields normal-
ized singular values λ1 = 1, λ2 = 0.1793, and λ3 = 0.0060,
suggesting that a two-dimensional active subspace may be
exploited for calibration.

Using a two-dimensional active subspace, we fit a 4th-
order multivariate polynomial to a set of training data as
illustrated in Figure 12. Performing calibration in the active
subspace yields posterior densities for the active variables
y1 and y2. The chain values for the inactive variable y3 are
sampled from a standard Gaussian prior distribution and all
three variables are then transformed back into the original
parameter space. Figure 13 shows a comparison of the poste-
rior densities between the full and reduced space calibrations.
The final computed mean parameter values obtained via the
reduced space calibration were q = [0.0004, 0.8070, 0.4002]
as compared to q = [0.0043, 0.9828, 0.4084] obtained via
the full space calibration. See Figure 13 for a comparison of
the posterior densities for both methods. With the exception
of the first parameter, the mean values obtained via the active
subspace are qualitatively very close to the nominal values
q = [0.023, 0.8, 0.4]. We also note that calibrating in the
reduced space has resulted in an identifiable parameter set,
as illustrated in Figure 11(b).

420-2-4-5

0

�104

3

2.5

2

1.5

1

0.5

0

-0.5
5

�104

0

0.5

1

1.5

2

2.5Testing Points
Response Surface

Fig. 12. 4th-order multivariate polynomial response surface and test points.

IV. CONCLUDING REMARKS

The results in Examples 2-4 demonstrate that Bayesian
inference, with diffuse prior distributions, can produce erro-
neous posterior distributions when implemented on the full
space of unidentifiable parameters. This is due to the fact that
chains do not adequately mix or sample the full parameter
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Fig. 13. Posterior densities for the full and reduced space calibrations.

space, as illustrated in Figure 9(b). For Example 2, this was
manifested by the fact that the likelihood did not significantly
influence any of the marginal distributions whereas for
Example 3, it produced incorrect marginal distributions for
unidentifiable parameters. Inference on the active subspace,
followed by mapping back to the physical space, provides a
well-posed and highly efficient technique to infer influential
parameter distributions.

As detailed in [5], Bayesian inference on the active sub-
space can introduce a bias and the authors provide a bound on
the Hellinger distance between the true posterior distribution
and that computed on the active subspace. In future work,
we will investigate the use of the negative log-likelihood to
determine the active subspace and employ the theory in [5]
to quantify potential biases. We will also illustrate the use of
these inference techniques for motivating applications arising
in nuclear engineering.
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